
ADA0O86 292 NORTHWESTERN UNIV EVANSTON IL DEPT OF ELECTRICAL ENS--ETC F/6 9/2
SELF-METRIC SOFTWARE. VOLUME 1I1. A HANDBOOKC. PART 1I. PERFORMA--rTC(II
APR 80 S S TAU, J S COLLOFELLO F306O2-76-C-0397

UNCLASSIFIED RADC-TR-B-136-VO..-3 ML

'1 i~i-iIIIlE

.... *32.. I32

jjj.25 11111~ ~ 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARD,,-I96, A

M IC T 4 3 VolIE (of Smo) (

SJA-

This report baa been rOVISIed, bY tha RAD Public Affairs Officee (PA)
and is-rola~able to, the ltlonl Toebical I foation service (NMI).
At NTIS t ill be welabl, to the Ssa.l public, Iscudiag foreign
nkationS.

LADC-T3-SW1)8. Vol III (of tbree) bee beep raive4n and is approved
for peblicatin.

APPROM~l

ROM F~. MvOM-

.111!Ptow ,~ a

£movu04

27

UNCLASSIFIED
SECURITY CLASSIFICATION OF TIS PAGE 0W r1 D P-d" ,

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
ALP -AT.Lp T NUMBER 12 GOVT ACCESSION NO' 3 RECIPIENT'S CATALOG NUMBER

/RADC TR-80-138, Vol IIl (of,-61rer) -

EL-MRC5FWR- Final Technical Report
4andbookjPart Il Performance Ripple Effect Aug 76 - Jan 80

ilysis - 6. PERFORMING OG. REPORT NUMBER. N / A

Stephen S. Yau F30642-76-C-0397 - -
/ ,) ames S.iCollofello

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10D PROGRAM ELEMENT. PROJECT. TASK

Northwestern University, Department of AREA & WORK UNIT NUMBERS

Electrical Engineering & Computer Scipe ,.- 02F 02
Evanston IL 60201 F
II. CONTROLLING OFFICE NAME AND ADDRESS ORT DATE

Rome Air Development Center (ISIS) April 1980

Griffiss AFB NY 13441 13 NUMBER OF PAGES47

14 MONITORING AGENCY NAME & ADORESS(If different from Controlini Office) IS SECURITY CLASS. (o th,. report)

Same iUNCLASSIFIED
S, OECLASSIFICATION DOWNGRADING

[N ;A SCHEDULE

ti. DISTRIBUTION STATEMENT (o this Report)

pproved for public release; distribution unlimited.

17. DISTRIBUTION STATEMEUA.LI-40. - -4 a O.4 dI~f-fArL11%a t Por -

Same ,7N ' / ± .

1. SUPPLEMENTARY NOTES

RADC Project Engineer: Rocco F. Iuorno (ISIS)

19. KEY WORDS (Colinue on. 1eymle Ide If itnecesary and Identify by block number)

Software maintenance process, performance ripple effect analysis,
mechanisms for modification propagation, technique, handbook, lexical
analysis and tracing, propagation mechanisms, performance attributes
and critical sections.

20. A ACT gonlte on revaire aide If neceeseey and Idefntify by block number)

This handboo consists of two parts on ripple effect analysis for large-
scale software maintenance. In Part I, a ripple effect analysis tech-
nique for so are maintenance from the logical or functional perspective
is presented.-In this volume, the Part II of the handbook, a ripple
effect analysis technique for software maintenance from the performance
perspective is presented. The purpose of this handbook is to present

ripple effect analysis techniques to assist software maintenance person-

DD 1473 EDITION Of' I NOV S$ IS OBSOLETE UNLSIID (Cont'd)

SECURITY CLASSIFICATION OF THIS PAGE rfton Date Entered j

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Wm, Date Entered,

Item 20 (Cont'd)

nel to do a better job in large-scale software maintenance. The
material presented in this handbook is organized in three levels. At
the first level, the software maintenance process is described and the
need for effective ripple effect analysis techniques for large-scale
software maintenance is given. The capabilities and restrictions of
the performance ripple effect analysis technique, as well as how this
techniques is interfaced with the user, are presented. At the second
level, the performance ripple effect analysis technique is outlined in
two phases: the lexical analysis phase and the tracing phase. At the
third level, the steps of the performance ripple effect analysis tech-
nique is not presented in this handbook, but contained in other reports.
Finally, the integration of the processing steps of the performance
ripple effect analysis and the logical ripple effect analysis is
discussed.

UNCLASSIFIED
SECURITY CLA ISFICAIO1 OF T-1 PAGEZM De Enfere)

Table of Contents

Page

List of Figures iii

List of Tables iii

1.0 INTRODUCTION 1

2.0 CAPABILITIES AND RESTRICTIONS OF THE PERFORMANCE
RIPPLE EFFECT ANALYSIS TECHNIQUE 4

3.0 USER INTERFACE 5

4.0 OUTLINE OF PERFORMANCE RIPPLE EFFECT ANALYSIS TECHNIQUE . . 7

4.1 Lexical Analysis Phase 7

4.1.1 Performance Characterization of the Program 7
4.1.2 Outline of the Procedure to Perform Lexical Analysis 9

4.2 Tracing Phase 10

4.2.1 Performance Ripple Effect Tracing 10
4.2.2 Outline of the Procedure to Perform Ripple Effect Tracing . 10

5.0 DESCRIPTION OF EACH STEP OF THE TECHNIQUE 11

5.1 Description of Lexical Analysis Steps11

5.1.1 Lexical Analysis Step 1 11

5.1.1.1 Identification of Parallel Execution Mechanism 12

5.1.1.2 Identification of Shared Resources Mechanism 14

5.1.1.3 identification of Interprocess Coamunication Mechanism . . . 14

5.1.1.4 Identification of the Called Modules Mechanism 16

5.1.1.5 Identification of the Shared Data Structures Mechanism . . . 16

5.1.1.6 Identification of the Sensitivity to the Rate of Input
Mechanism 18

5.1.1.7 Identification of the Execution Priorities Mechanism . . . 18

5.1.1.8 Identification of the Abstraction Mechanism 19

5.1.2 Lexical Analysis Step 2 19

5.1.2.1 Identification of Critical Sections of Type One 19
5.1.2.2 Identification of Critical Sections of Type Two 21
5.1.2.3 Identification of Critical Sections of Type Three o. 21
5.1.2.4 Identification of Critical Sections jof Type Four 22
5.1.2.5 Identification of Critical Sections of Type Five 22
5.1.2.6 Identification of Critical Sections of Type Six 23
5.1.2.7 Identification of Critical Sections of Type Seven 23

5.1.3 Lexical Analysis Step 3 . . . o o 23
5.1.4 Lexical Analysis Step 4 26

5.1.5 Lexical Analysis Step 5 o...................... 27

...i..

Table of Contents

Page

5.2 Description of Ripple Effect Tracing Steps 28

5.2.1 Tracing Step 1 28
5.2.2 Tracing Step 2 28
5.2.3 Tracing Step 3 29
5.2.4 Tracing Step 4 29

5.2.4.1 Description of Processing Step 1 30
5.2.4.2 Description of Processing Step 2 30
5.2.4.3 Description of Processing Step 3 33
5.2.4.4 Description of Processing Step 4 34

5.2.4.4.1 Algorithm for Identifying Virtual Performance
Attributes of Type One 35

5.2.4.4.2 Algorithm for Identifying Virtual Performance
Attributes of Type Two 35

5.2.4.4.3 Algorithm for Identifying Virtual Performance
Attributes of Type Three 35

5.2.4.4.4 Algorithm for Identifying Virtual Performance
Attributes of Type Four 36

5.2.4.4.5 Algorithm for Identifying Virtual Performance
Attributes of Type Five 36

5.2.5 Tracing Step 5 36

6.0 INTEGRATION OF THE PERFORMANCE RIPPLE EFFECT ANALYSIS

AND THE LOGICAL RIPPLE EFFECT ANALYSIS PROCESSING STEPS . 37

6.1 Lexical Analysis Phase 37
6.2 Tracing Phase 38

7.0 REFERECES 39

ii

' " ec. =
r

.. .-..... .

List of Figures

Page

Figure 1. A software maintenance process with the ripple
effect analysis techniques 2

Figure 2. Illustration of the inputs and outputs of the
performance ripple effect analysis technique 3

Figure 3. User Interface level of the performance ripple
effect analysis technique 6

Figure 4. The invocation graph of a sample program as an
example of identification of performance inter-
dependency relationships via the parallel execution
mechanism 13

Figure 5. The invocation graph of a sample program as an
example of identification of performance dependency
relationships via the interprocess communication
mechanism 15

Figure 6. The invocation graph of a sample program as an
example of identification of performance dependency
relationships via the called modules mechanism 17

Figure 7. An example of identification of performance dependency
relationships via the abstraction mechanism 20

List of Tables

Page

Table 1. Labels for mechanisms for propagation of performance
changes 31

WWWi77

1.0 Introduction

The high cost of software maintenance and the urgent need for techniques

to improve the software maintenance process were discussed in Part I of this

handbook. As we have discussed before, the complexity of software maintenance

is primarily due to the ripple effect of software modification, and a logical

ripple effect analysis technique has been presented in Part I of the handbook

[1]. Since a large-scale program usually has both functional and performance

requirements, the ripple effect of program modifications must be analyzed from

both a functional and a performance point of view. Thus, in this part of the

handbook, a performance ripple effect analysis technique, which should be used

in conjunction with the logical ripple effect analysis technique will be pre-

sented.

The perspective of performance ripple effect analysis technique, as well

as the logical ripple effect analysis technique in the software maintenance

process is shown in Figure 1. Figure 2 expands the box of performance ripple

effect analysis in Figure 1 to illustrate the inputs and outputs of the per-

formance ripple effect analysis technique. The outputs of this technique in

conjunction with that of the logical ripple effect analysis technique can help

maintenance personnel understand the scope of effect of their changes on the

program. The results can also aid the maintenance personnel in determining

which parts of the program must be examined for consistency or possible opti-

mization to improve performance. The net results of applying the logical and

performance ripple effect analysis techniques are:

* Smoother implementation of program modifications

* Reduction of program errors introduced in the program

due to modifications

* Reduction of program structure degradation as a consequence of

program modification due to an increased understanding of the

implications of the modification

* Decrease of the growth rate of program complexity due to program

modification

* Extension of overall program's operating life

1 .''

Determine
Maintenance
Objective

Understand
Program

Generate a
Maintenance
Proposal and

Make the Initial
Modification

Apply Logical Apply Performance
Ripple Effect Ripple Effect

Analysis Analysis
Technique Technique

RippleNo

Complete the Modifi-

cation by Accommodating
Ripple Effect

Figure 1. A software maintenance process with

the ripple effect analysis techniques

2

Performance
Source code requirements

affected by

Performance the modification

Proposed Ripple Effect
modification Analysis

Technique

Performance N Figure for the

requirements 4 complexity of the
program modification

Figure 2. Illustration of the inputs and
outputs of the performance ripple
effect analysis technique.

3A

-:_ _ _ _

Another significant product of the logical and performance ripple effect

analysis techniques is the computation of the complexity of a proposed program

modification. One such figure has been proposed which reflects the amount of

work involved in performing maintenance and thus provides a standard on which

comparisons of modifications can be made [2]. However, further research is

required for estimating such a figure.

The objective of Part II of this handbook is to describe the performance

ripple effect analysis technique in a clear and concise manner. Section 2

describes the capabilities and restrictions of the technique. Section 3 pre-

sents the user level interface to this technique as it is perceived to be

when fully implemented. Section 4 outlines the required processing necessary

to accomplish the functions described in Section 3. Section 5 deals with a

description of each of the processing steps. Section 6 integrates the

required processing steps of the performance ripple effect analysis technique

with that of the logical ripple effect analysis technique. This handbook does

not contain implementation details or verification of the algorithms described.

Further information of this type is discussed in other more detailed reports

[3-51.

2.0 Capabilities and Restrictions of the Performance Ripple Effect Analysis

Technique

The performance ripple effect analysis technique described in this part

of the handbook is language independent and applicable to existing programs as

well as newly implemented programs incorporating state-of-the-art design tech-

niques. The technique does not provide maintenance personnel with proposals

for modifying the program. Instead, the technique is applied after the main-

tenance personnel have generated a number of possible maintenance proposals.

The current version of the performance ripple effect analysis technique

makes the following assumptions about the program to be analyzed.

1. The performance requirements for the program are testable and stated in

terms of flows through the program. If the performance requirements are

stated in a machine readable requirements statement language, then the techni-

que can be fully automated.

4 w

2. Parallel execution can only exist at the module level. This is an assump-

tion for simplifying the technique and can easily be eliminated at a cost of

using more complex algorithms.

3. The ability of a module to execute in parallel with another module is

reflected in the software implementation or its accompanying documentation.

4. Execution priorities are reflected in the software implementation or its

accompanying documentation.

3.0 User Interface

The success of any software technique depends on its ease of use. The

technique must be simple to understand and apply to the problem. This implies

a high degree of automation in which the user interfaces with the technique at

a very high level, and the technique is transparent to the user on how it

operates.

The performance ripple effect analysis technique has been developed with

these objectives. When the technique is fully automated, it is very easily

applied to the problem. Although the t2chnique is very sophisticated, the

maintenance personnel applying the technique need only be concerned with its

output. The performance ripple effect analysis technique is applied in the

following three simple steps which are illustrated in Figure 3.

Step 1: Maintenance personnel utilize a change management system (CMS) to

modify the program. The CMS consists of a text editor and a data base. The

CMS records all of the changes in the program automatically in the data base.

Thus, a record of the maintenance activity is created without special assist-

ance from the maintenance personnel.

Step 2: After the modification of the program is complete, the maintenance

personnel execute the lexical analysis package of the performance ripple

effect analysis technique.

Step 3: Upon completion of the lexical analysis step, the maintenance person-

nel execute the tracing package which utilizes the data base of program changes

created by the CM and maps these changes into the characterization of the

program created by the lexical analysis step. It then traces performance

ripple effect throughout the program. The output of the tracing package is a

listing of the performance requirements affected by performance ripple effect.

5

0
-4

00 4-J

0) V4

u w- -45.w

0r~~~L I Q) 4* I"

wC

-4 C4 4-w
ri 00cU I r

0w cc

C '4C4

ot

"44

1.4)
.W cc 0

CL I -4

o v to- w

0 = .' to >
w II

Q AC

The performance ripple effect analysis technique, thus, provides mainte-

nance personnel with valuable information about the maintenance activity with-

out interfering with the maintenance process itself or requiring additional

input from the maintenance personnel.

4.0 Outline of Performance Ripple Effect Analysis Technique

In this section, we will outline the processing steps involved with the

lexical analysis and tracing phases of the performance ripple effect technique.

4.1 Lexical Analysis Phase

The first phase of the performance ripple effect analysis technique is

the lexical analysis phase. In this phase, the program is analyzed with

respect to the proposed modification and a characterization of the program is

compiled and saved in a data base. The characterization of the program con-

tains information necessary for tracing performance ripple effect. A descrip-

tion of the performance information needed for this characterization will now

be presented.

4.1.1 Performance Characterization of the Program

The ability to trace performance ripple effect in a program requires the

identification of modules whose performance may change as a consequence of

software modifications. This is a complex task because performance dependen-

cies often exist among modules which are otherwise functionally and logically

independent. A performance dependency relationship (PDR) is defined to exist

from module A to module B if and only if a change in module A can have an

effect on the performance of module B. A performance interdependency rela-

tionship (PIR) is defined to exist between two modules A and B if a PDR exists

from module A to module B and a PDR exists from module B to module A.

It is obvious that when a logical error is discovered in the software,

this error can affect other modules. Analogously, when a performance change

is introduced, the scope of effect of the change can be determined by examin-

ing the performance dependency relationships in existence in the program.

These performance dependency relationships are determined by identifying the

mechanisms by which performance changes are propagated in a program. We have

identified eight mechanisms which may exist in large-scale programs by which

j___

changes in performance are propagated throughout the program [3,4]. The

identification of which mechanisms exist in the program and which performance

dependency relationships exist between the modules via these mechanisms are

important components of the performance characterization of the program pro-

duced during lexical analysis.

Performance attributes of a program are defined as attributes correspond-

ing to measurements of key aspects of the execution of the program. There

exists a distinct relationship between performance attributes and the eight

mechanisms for the propagation of performance changes. The eight mechanisms

operate as links between performance attributes such that a change in a per-

formance attribute of one module can affect a performance attribute in another

module via one of the eight mechanisms. Fourteen performance attributes for

large-scale programs have been identified [4]. The identification of

these performance attributes is also an important component of the performance

characterization of the program produced during lexical analysis.

There is also a relationship between the performance attributes and the

performance requirements of the program. Performance requirements can be

decomposed qualitatively into performance attributes which contribute to the

preservation or violation of the performance requirements. This decomposition

depends on the method utilized in specifying the performance requirements.

Guidelines for the decomposition of performance requirements stated at a level,

such as the R-Net level, have been developed [3,4]. As requirement statement

languages [6] continue to develop, it appears feasible that the decomposition

of performance requirements into performance attributes may be accomplished

automatically. Thus, a set of performance attributes can be associated with

each performance requirement such that if a performance attribute in the set

is affected by a modification, then the performance requirement associated

with this set is also affected. This decomposition of performance requirements

into the program's performance attributes is an important component of the

performance characterization.

Since the performance attributes of a program correspond to measurements

of key aspects of the execution of the program, they can be affected during

the maintenance process by modification to the program. A critical section of

a program can be associated with each performance attribute such that if this

critical section is modified, the corresponding performance attribute may be

8

affected. Seven types of critical sections for large-scale programs have

identified [4). The identification of these critical sections is an

important component of the performance characterization of the program pro-

duced during lexical analysis.

When a performance attribute is affected by a modification, the other

performance attributes affected by the change must be identified. It is not,

however, always possible to identify exactly which performance attributes are

affected as a consequence of the performance ripple effect. When a particular

performance attribute is affected by a modification, it is possible to iden-

tify the critical sections of code which may experience the performance change.

Corresponding to each critical section, there may be several performance attri-

butes. The concept of a virtual performance attribute is introduced to repre-

sent this change in performance of a critical section.

A virtual performance attribute is defined to represent a change in per-

formance of a critical section which is a consequence of affecting some per-

formance attribute in the program. If a performance attribute is involved in

a performance dependency relationship with a virtual performance attribute, it

means that a change in the performance attribute will affect the virtual per-

formance attribute, i.e. the performance of some software section. Correspond-

ing to the virtual performance attribute, there may be many performance attri-

butes. Five virtual performance attributes for large-scale programs have been

identified [4]. The identification of these virtual performance attributes

is an important component of the performance characterization of the program

produced during lexical analysis.

4.1.2 Outline of the Procedure to Perform Lexical Analysis

The processing steps involved with lexical analysis can be summarized as

follows:

Step 1: Identify all of the mechanisms for the propagation of performance

changes and the corresponding performance dependency relationships in the

program.

Step 2: Identify all of the critical sections in the program.

Stev.3: Identify all of the performance attributes in the program.

Step 4: Identify all of the virtual performance attributes in the program.

ii 9

Step 5: Decompose the performance requirements for the program into the per-

formance attributes which contribute to the preservation or violation of the

performance requirements.

4.2 Tracing Phase

The second phase of the performance ripple effect analysis maintenance

technique consists of tracing the performance changes, i.e. the performance

ripple effect which occurs as a consequence of the maintenance changes. The

input to the technique in this phase includes all of the information about the

program collected and stored in a data base during the lexical analysis phase.

4.2.1 Performance Ripple Effect Tracing

Tracing performance ripple effect is a complex task, and is accomplished

by analyzing the performance attributes which are affected by the modification.

When a particular performance attribute is affected, it may affect other per-

formance attributes in the program. These affected performance attributes may

then in turn affect other performance attributes which accounts for the ripple

effect.

This ripple effect of performance changes can be analyzed through the use

of performance dependency relationship rules. These rules represent the con-

ditions by which a change in a performance attribute can affect another per-

formance attribute or a virtual performance attribute. A complete set of per-

formance dependency relationship rules for tracing ripple effect has been

developed [4].

4.2.2 Outline of the Procedure to Perform Ripple Effect Tracing

In this section, the processing steps for tracing performance ripple

effect will be presented in the required order.

Step 1: Utilizing the change management system data base and the characteriza-

tion of the program produced during lexical analysis, identify the set of

blocks involved in the change for each module In the program.

Step 2: Based on the blocks involved in the change identified in the last

step and the characterization of the program produced during lexical analysis,

identify all of the critical sections affected by the maintenance activity.

10

I:

4....
_ _

Step 3: For each of the critical sections affected by the modification,

determine the corresponding performance attributes which may be affected if

the critical section is modified. (The correspondence between performance

attributes and critical sections was generated during lexical analysis.)

Step 4: Trace the performance ripple effect among the performance attributes

utilizing the performance dependency relationship rules in order to identify

all of the performance attributes affected by the modification.

Step 5: Identify the performance requirements which are affected by a change

in any of the performance attributes involved directly with the modification

or through its ripple effect. These performance requirements can be identi-

fied by the traceability of the decomposition of the performance requirements

into the performance attributes performed during lexical analysis.

5.0 Description of Each Step of the Technique

In this section, a description of each of the steps involved in the lexi-

cal analysis and tracing phases of the performance ripple effect analysis will

be provided. The description will be informal and concise. The processing

steps will be described at a level which is language independent. Informal

algorithms and approaches used in these steps will also be presented, but the

actual implementation is language dependent and hence omitted.

5.1 Description of Lexical Analysis Steps

In this section, a description will be presented for each of the lexical

analysis steps outlined in Section 4. Section 5.2 will contain a description

of each of the steps in the tracing phase which has also been outlined in

Section 4.

5.1.1 Lexical Analysis Step I

In this step, all of the mechanisms for the propagation of performance

changes and the corresponding performance dependency relationships in the

program are identified. These performance dependency relationships can be

saved in a data base for later use in other processing steps. In the follow-

ing sections, a description of how to identify each of the mechanisms will be

presented.

W11

5.1.1.1 Identification of Parallel Execution Mechanism

Software modifications to a module can destroy the ability of the module

to execute in parallel with other modules and lead to major changes in perfor-

mance due to execution delays and contention for resources previously allevi-

ated through the parallel execution. The identification of the existence of

the parallel execution mechanism in a program and the modules in the program

affected by this mechanism requires identification of which modules in the

program can be executed in parallel. Parallel execution considered here is

restricted to the module level for simplicity purpose. The determination of

which modules can be executed in parallel is a decision made during the design

phase of the program. This decision must be reflected in either the software

implementation or its accompanying documentation.

Parallel execution can be illustrated using various control flow graph

techniques. The program's control flow path can then be analyzed to identify

which modules were designed to be executed in parallel. A PIR is then defined

to exist between each pair of modules executable in parallel. If module A and

module B are executable in parallel, FIRs are also defined to exist between

each module in the set of modules directly or indirectly invocable from module

A, including module A, and each module in the set of modules directly or

indirectly invocable from module B, including module B. A module X is directly

or indirectly invocable from a module Y if module X is in the subtree with

root Y of the module invocation graph of the program. For example, consider

the invocation graph for the sample program in Figure 4 and assume that mod-

ules 4 and 6 are executable in parallel. The set of modules directly or

indirectly invocable from module 4 is (7,11,12). The set of modules directly

or indirectly invocable from module 6 is (9,10,14]. Thus, FIRs via the paral-

lel execution mechanism of modules 4 and 6 can be identified for the following

pairs of modules: (4,6), (4,9), (4,10), (4,14), (6,7), (6,11), and (6,12).

Algorithms can easily be developed for systematically analyzing the con-

trol flow graph structure of large scale programs to identify the modules

affected by the parallel execution mechanism. One such algorithm developed

for analyzing an R-Net control flow structure is formally described elsewhere

[4].

~12

Figure 4. The invocation graph of a sample program
as an example of identification of perfor-
mance interdependency relationships via
the parallel execution mechanism.

13

5.1.1.2 Identification of Shared Resources Mechanism

Software modifications to modules sharing resources affecting the time

when the modules request and release common resources can result in perfor-

mance degradation by the other modules whose execution is affected by the

denial of requested resources which are currently dedicated to other modules.

The identification of the existence of the shared resources mechanism in a

program and the modules in the program affected by this mechanism requires the

identification of modules sharing common resources and executable in parallel.

Sets of modules executable in parallel can be identified by the parallel exe-

cution mechanism. Requests for resources can also be identified during compi-

lation. Resources are defined in the standard terminology and include such

things as programs, files, devices, etc. Thus, for each resource, a set of

modules u.tilizing the resource can be identified by a static analysis of the

code. For each resource and the set of modules utilizing the resource, a sub-

set of these modules executable in parallel can be identified. This subset of

modules is utilizing the resource at the same time. If the number of modules

in this subset is greater than the number of resources of the same type avail-

able, then the modules are competing for the resources. A PIR is then defined

to exist between each pair of modules which are competing for the same resource

via the shared resources .mechanism.

5.1.1.3 Identification of Interprocess Communication Mechanism

Software modifications to a module affecting the time when it transmits a

message to a waiting module can affect the performance of the module designated

to receive the message. Interprocess communication can be identified in the

software when synchronization primitives such as P and V operators or WAIT and

POST macros are utilized. It is then possible to perform a static analysis of

the program to identify the modules involved in the communication. A PDR is

then defined to exist between the module sending the message and the module

designated to receive the message. If module A is transmitting a message to

module B, PDRs are also defined to exist between each module in the set of

modules which directly or indirectly invokes module A and module B. For

example, consider the invocation graph for the sample program in Figure 5 and

assume that module 4 is transmitting a message to module 6. The set of modules

which directly or indirectly invokes module 4 is (1,2). Thus, PDRs via the

14

Figure 5. The invocation graph of a sample program
as an example of identification of perfor-
mance dependency relationships via the
interprocess communication mechanism.

L15

interprocess communication mechanism can be defined for the following pairs of

modules, where the PDR exists from the first module in the pair to the second:

(4,6), (1,6), (2,6).

5.1.1.4 Identification of the Called Modules Mechanism

Software modifications to a module can affect the performance of every

module which directly or indirectly invoke it. For example, a change to a

module affecting its execution time will affect the execution time of all the

modules which directly or indirectly invoke it. The invocation structure of a

program can easily be constructed by a static analysis of the code. One tool

already available for performing this task is JAVS 171. For each module X,

a PDR is then defined from each module in the set of modules directly or

indirectly invocable from module X to module X. For example, consider the

invocation graph for the sample program in Figure 6. PDRs via the called mod-

ule mechanism can be defined for the following pairs of modules, where the PDR

exists from the first module in the pair to the second: (5,2), (5,1), (2,1),

(9,6), (9,2), (9,1), (6,1), (6,2), (3,1), (4,1).

5.1.1.5 Identification of the Shared Data Structures Mechanism

Software modifications affecting the contents of shared data structures

can affect the storage and retrieval times for entries in the data structure

by other modules sharing the data structure. Modifications affecting the'

quantity of data stored must be analyzed to determine the effect on the per-

formance of the modules utilizing the shared data structure.

The modules manipulating shared data structures can be classified into

one or more of the following categories based upon their utilization of the

data structure:

* Reference entries only

* Update entries

* Create new entries

* Delete old entries

Shared data structures and the modules manipulating them can easily be

identified by a static analysis of the program [4]. Shared data structures

can be identified as global constructs or passed parameters. References to

16

Figure 6. The invocation graph of a sample program
as an example of identification of perfor-
mance dependency relationships via the
called modules mechanism.

17

these shared data structures are also identifiable by a compiler. These refer-

ences can then be placed in one of the above categories. PDRs via the shared

data structures mechanism are then defined to exist between each module in the

set of modules which creates or deletes entries in the shared data structure

and each module in the set of modules which shares the data structure.

5.1.1.6 Identification of the Sensitivity to the Rate of Input Mechanism

Changes in input rates to a 'process can lead to saturation and possibly

overflow of data structures involved with the processing of the input. The

increased input rate can also lead to increased interruptions in processing

and possibly performance requirement violations. The identification of the

existence of the sensitivity to the rate of input mechanism in a program and

the modules in the program affected by this mechanism requires the identifica-

tion of which modules interface with the environment to handle input inter-

rupts. These modules can be identified by a static analysis of the code. A

PDR is then estahlished for these modules such that if the rate of input

changes, then a performance change in the modules will result.

5.1.1.7 Identification of the Execution Priorities Mechanism

Software modifications affecting execution priorities in the program can

create conflicts such as resource contention that can lead to performance

degradation. In addition, if module A has the ability to interrupt the execu-

tion of module B, then modifications to module A affecting its execution time

can affect the performance of module B since module B must wait until module A

completes its execution before module B can complete its execution. Execution

priorities are established in the program during the software development

phase. These priorities must be reflected in either the software implementa-

tion or in the accompanying documentation. Thus, for each module X in the

program, we can identify the set of modules for which X has interrupt priority,

i.e. the set of modules that can be interrupted by module X. A PDR is then

defined to exist from module X to each of the modules in this set. If module

X has interrupt priority over module Y, PDRs via the execution priority mech-

anism are also defined to exist between module X and each module in the set of

modules directly or indirectly invocable from module Y.

18

5.1.1.8 Identification of the Abstraction Mechanism

Control and data abstractions are popular design tools that increase the

maintainability of a program by hiding design decisions. From a performance

perspective, however, these abstractions can decrease the maintainabiliLy of a

program. This is because a change in the implementation of the abstraction

will very likely affect the performance of the abstraction, and hence the

performance of all the modules utilizing the abstraction. The utilization of

abstractions in a module can be easily identified by static analysis. Abstra-

tions can be recognized in the module as subroutine calls, function calls, and

macros. PDRs can then be defined from the implementations of the abstractions

to the modules utilizing them. If module A utilizes abstraction X, then PDRs

exist from the implementations of all abstractions directly or indirectly

utilized by abstraction X to module A. An abstraction Y is directly or

indirectly utilized by' an abstraction X if X utilizes the abstraction Y or X

utilizes an abstraction which directly or indirectly utilizes abstraction Y.

For example, consider the invocation graph and static analysis information for

the sample program in Figure 7. PDRs via the abstraction mechanism can be

identified from the implementations of abstractions Al, A2, and A3 to module 4

and from abstraction A2 to module 5.

5.1.2 Lexical Analysis Step 2

In this section all the critical sections in the program will be identi-

fied. The identification of the critical sections utilizes the data base of

performance dependency relationships created during the identification of the

mechanisms for the propagation of performance changes. The critical sections

are identified in terms of program blocks. A critical section data base is

then created in such a manner that it is possible to identify which critical

sections are associated with a particular program block. There are seven

types of critical sections. In the following sections, a description of how

to identify each of the critical section types will be presented.

5.1.2.1 Identification of Critical Sections of Type One

A critical section of type one is defined for all modules involved in a

FIR via the parallel execution mechanism and consists of all of the blocks in

the module. The identification of these critical sections requires two steps.

19

17-".w -- -'-'-"- ---- w"- --- _.... ._ __......

Summary of Utilization of Abstractions

Module 4 invokes abstraction Al.
Module 5 invokes abstraction A2.

Abstraction Al utilizes abstraction A3.
Abstraction A3 utilizes abstraction A2.

Figure 7. An example of identification of
performance dependency relation-
ships via the abstraction mechanism.

20

y - 2 -

Step 1: Identify all of the modules involved in a PIR via the parallel execu-

tion mechanism.

Step 2: For each of these modules, designate all of the blocks in the module

to be in a critical section of type one for the module.

5.1.2.2 Identification of Critical Sections of Type Two

A critical section of type two is defined for all modules involved in a

PIR via the shared resources mechanism and consists of all of the blocks in

the module between its invocation and request for the resource in contention.

It may also consist of all of the blocks in the module between its invocation

and its call to a module which is involved in a PIR via the shared resources

mechanism. The identification of these critical sections requires the follow-

ing steps:

Step 1: For each module involved in a PIR via the shared resources mechanism,

designate the blocks in the module between its invocation and its request for

the resource in contention as in a critical section of type two for the

module. If the module contains multiple requests for the resource, it will

have multiple critical sections.

Step 2: For each module involved in a FIR via the shared resources mechanism,

designate the blocks in the module between its invocation and its call to

another module involved in a PIR via the shared resources mechanism as in a

critical section of type two for the module. If the module contains multiple

calls to modules involved in FIRs via the shared resources mechanism, it will

have multiple critical sections.

5.1.2.3 Identification of Critical Sections of Type Three

A critical section of type three is defined for all modules involved in a

FIR via the shared resources mechanism which request the resource in contention

and consists of all of the blocks in the module between its request for the

resource in contention and its release of the resource. The identification of

these critical sections requires the following steps:

Step 1: Identify all of the modules involved in a FIR via the shared

resources mechanism.

21

Step 2: For each of these modules which directly requests the resource in

contention, designate the blocks in the module between its request for the

resource in contention and its release of the resource as in a critical

section of type three for the module.

5.1.2.4 Identification of Critical Sections of Type Four

A critical section of type four is defined for all dominant modules

involved in a PDR via the interprocess communication mechanism and consists

of all of the blocks in the module between its invocation and its transmission

of the message. A module X is the dominant module involved in a PDR with

module Y, if a change in module X can affect module Y via the PDR. The criti-

cal section may also consist of all blocks in the dominant module between its

invocation and its call to another dominant module involved in a PDR via the

interprocess communication mechanism. The identification of these critical

sections requires the following steps:

Step 1: For each dominant module involved in a PDR via the interprocess com-

munication mechanism, designate the blocks in the module between its invoca-

tion and its transmission of the message as in a critical section of type

four for the module. If the module contains multiple transmissions of mes-

sages, it will have multiple critical sections.

Step 2: For each dominant module involved in a PDR via the interprocess com-

munication mechanism, designate the blocks in the module between its invoca-

tion and its call to another dominant module involved in a PDR via the inter-

process communication mechanism as in a critical section of type four for

the module. If the module contains multiple calls to dominant modules invol-

ved in PDRs via the interprocess communication mechanism, it will have multiple

critical sections.

5.1.2.5 Identification of Critical Sections of Type Five

A critical section of type five is defined for all dominant modules invol-

ved in a PDR via the called modules mechanism, the execution priorities mecha-

nism or the abstraction mechanism and consists of all the blocks in the module.

The identification of these critical sections requires the following steps:

22

77=_ _

Step 1: Identify all of the dominant modules involved in a PDR via the called

modules mechanism, the execution priorities mechanism, or the abstraction

mechanism.

Step 2: For each of these modules, designate all of the blocks in the module

as in a critical section of type five for the module.

5.1.2.6 Identification of Critical Sections of Type Six

A critical section of type six is defined for all dominant modules invol-

ved in a PDR via the called modules mechanism or the abstraction mechanism and

consists of all of the blocks in the module between its request for a resource

and its release of the resource. The identification of these critical sections

requires the following steps:

Step i: Identify all of the dominant modules involved in a PDR via the called

modules mechanism or the abstraction mechanism.

Step 2: For each of these modules, designate the blocks in the module between

its request for a resource and its release of the resource as in a critical

section of type six for the module. If the module utilizes multiple resources,

it will have multiple critical sections of this type.

5.1.2.7 Identification of Critical Sections of Type Seven

A critical section of type seven is defined for all modules containing a

dependent iterative structure. A dependent iterative structure is an iterative

structure which does not possess a constant number of iterations, i.e. it has

a variable number of iterations dependent upon certain program variables. Each

dependent iterative structure has its own critical section. The identification

of these critical sections requires the following steps:

Step 1: Examine each module and identify the dependent iterative structures

in the module.

Step 2: For each dependent iterative structure in each module, designate the

set of variables involved in the iterative structure, excluding the index

variable as a critical section of type seven for the module.

5.1.3 Lexical Analysis Step 3

In this section all of the performance attributes in the program will be

23

identified. A data base of performance attribute information will be created

which associates performance attributes with modules and data structures.

Many performance attributes will also be associated with particular critical

sections such that if the critical section is modified, the corresponding

performance attribute affected can be identified. Each performance attribute

will now be defined and a description of how it is identified will be pre-

sented.

Performance Attribute 1: The ability of the module to execute in parallel

with another module.

This performance attribute is associated with critical sections of type

one.

Performance Attribute 2: For each resource in contention, the relative time

that the module seizes the resource.

This performance attribute is associated with critical sections of type

two.

Performance Attribute 2: For each resource in contention, the relative time

that the module releases the resource.

This performance attribute is associated with critical sections of type

three.

Performance Attribute 4: The relative time that the module begins execution.

This performance attribute is associated with critical sections of type

four.

Performance Attribute 5: The relative time that a module transmits a message

to another module.

This performance attribute is associated with critical sections of type

four.

Performance Attribute 6: The execution time of the module.

This performance attribute is associated with critical sections of type

five.

24

Performance Attribute 7: For each resource utilized in the module, the

resource utilization by the module. Resource utilization is defined as the

time that the module possesses the resource.

This performance attribute is associated with each module which utilizes

a resource. It is also associated with critical sections of type six.

Performance Attribute 8: For each data structure, the storage and retrieval

times for entries in the data structure.

This performance attribute is associated with each data structure in the

program.

Performance Attribute 9: For each data structure, the number of entries in

the data structure.

This performance attribute is associated with each data structure in the

program.

Performance Attribute 10: For each data structure, the service time of an

entry in the data structure, i.e. the relative time that an entry remains in

the data structure before being serviced.

This performance attribute is associated with each data structure in the

program.

Performance Attribute 11: The rate of input to the module.

This performance attribute is associated with each module in the program

involved in a PDR via the sensitivity to the rate of input mechanism.

Performance Attribute 12: For each dependent iterative structure in the mod-

ule, the number of iterations.

This performance attribute is associated with critical sections of type

seven.

Two additional performance attributis will be defined in Section 5.1.5

discussing the decomposition of performance requirements into performance

attributes. These performance attributes are identified in the program in

that step and are then added to the performance attribute data base.

25

5.1.4 Lexical Analysis Step 4

In this section all of the virtual performance attributes in the program

will be identified. A data base which associates virtual performance attri-

butes with modules and particular statements within the modules will be

created. Each virtual performance attribute will now be defined and a descrip-

tion of how it is identified presented.

Virtual Performance Attribute 1: The execution time of the critical sections

of a competing module which must wait due to denial of a particular contended

resource.

This virtual performance attribute is associated with each module invol-

ved in a PIR via the shared resources mechanism and each statement in the

module, which requests the resource in contention.

Virtual Performance Attribute 2: The execution time of the critical sections

of a module which contain an invocation to a module or the utilization of an

abstraction.

This virtual performance attribute is associated with each dominant module

involved in a PDR via the called modules mechanism or the abstraction mechanism

and each statement in the module which invokes another module or an abstrac-

tion.

Virtual Performance Attribute 3: The execution time of the critical sections

of a module which contain a dependent iterative structure.

This virtual performance attribute is associated with each dependent

iterative structure in the module.

Virtual Performance Attribute 4: The execution time of the critical sections

of code which contain a storage or retrieval request of an entry from a data

structure.

This virtual performance attribute is associated with each module in the

program utilizing a shared data structure and each statement in the module

which references the shared data structure.

Virtual Performance Attribute 5: The execution time of the critical sections

of code which must wait for a message to be transmitted from another module.

26

This virtual performance attribute is associated with each dependent

module involved in a PDR via the interprocess communication mechanism and each

statement in the module corresponding to a WAIT for the message. A module Y

is the dependent module involved in a PDR with module X, if a change in

module X can affect module Y via the PDR.

5.1.5 Lexical Analysis Step 5

In this section, the decomposition of performance requirements into per-

formance attributes will be discussed. The decomposition of a performance

requirement quantitatively into the effect of its corresponding performance

attributes is a very complex task which is not attempted in this technique.

Instead, the decomposition is qualitative in nature, i.e. performance attri-

butes are identified which contribute to the preservation or violation of per-

formance requirements without consideration of their relative magnitude

towards the performance requirements. This simplification is justified

because this maintenance technique attempts to identify performance require-

ments which may be violated due to the maintenance effort, and does not

attempt to analytically confirm whether or not a performance requirement is

actually violated. The guidelines for the decomposition of performance

requirements into performance attributes are based upon the assumption that

the performance requirements are testable and stated in terms of processing

flows. A data base will be created containing the decomposition information.

The data base will be utilized in later phases where the traceability of the

decomposition of the performance requirements into the performance attributes

is required.

The decomposition of the performance requirements into the performance

attributes can be accomplished in the following way:

Step 1: Analyze each performance requirement. If the performance requirement

states that the program executes in a specifihd time between two points, then

identify the modules whose execution is governed by the performance require-

ment. The performance requirement is then decomposed into performance attri-

butes of type six for each of these modules. If the module does not already

have a performance attribute of type six, one is added to the performance

attribute data base along with an appropriate critical section of type five.

27

If only a particular segment of a module is governed by the performance

requirement, then the requirement is decomposed into a performance attribute

of type 6'. Performance attribute 6' corresponds to the execution time of a

segment of code. Critical section 5' is the corresponding critical section

for performance attribute 6'. Both must then be added to the performance

attribute and critical section data bases.

Step 2: If the performance requirement states that the program is executed

with resource utilization restrictions between two points, then identify the

modules whose execution is governed by the performance requirement. The per-

formance requirement is then decomposed into performance attributes of type 7

for each of these modules.

If only a particular segment of a module is governed by the performance

requirement, then the requirement is decomposed into a performance attribute

of type 7'. Performance attribute 7' corresponds to the resource utilization

of a segment of code. Critical section 7' is the corresponding critical sec-

tion for performance attribute 7'. Both critical section 7' and performance

attribute 7' must then be added'to the performance attribute and critical sec-

tion data bases.

5.2 Description of Ripple Effect Tracing Steps

In this section, a description will be presented for each of the perfor-

mance ripple effect analysis tracing steps outlined in Section 4.

5.2.1 Tracing Step 1

In this step, the change management system (CMS) data base and the char-

acterization of the program produced during lexical analysis are utilized to

determine the set of program blocks involved in the maintenance change.

5.2.2 Tracing Step 2

In this step, all of the critical sections affected by the maintenance

activity are identified. This is accomplished by utilizing the critical sec-

tion data base created during lexical analysis to determine which critical

sections a particular block is an element of. Thus, once the blocks under-

going maintenance are identified, the critical section data base can be

referenced to determine which critical sections are affected by the mainte-

nance activity.

28

This process can be completely automated through the utilization of the

change management system. This system automatically keeps track of program

changes during the maintenance activity and records them in the change manage-

ment data base. After lexical analysis is complete, a simple procedure could

be developed to map the program changes recorded in the change management data

base into changes affecting program blocks, which in turn can be used.to iden-

tify the critical sections by referencing the critical section data base.

5.2.3 Tracing Step 3

In this step, the performance attributes corresponding to the critical

sections affected by the modification are identified. This identification is

trivial since the critical sections and corresponding performance attributes

were identified during lexical analysis and this information was recorded in

the performance attribute data base. Thus, this step consists of only refer-

ences to the performance attribute data base to identify the performance

attributes associated with the critical sections affected by the maintenance

activity.

5.2.4 Tracing Step 4

In this section, a description of how to identify all of the performance

attributes in the program affected directly by the modification and by perfor-

mance ripple effect will be presented. This requires an identification of

the performance dependency relationships in existence among the performance

attributes and virtual performance attributes. A performance dependency

relationship is defined to exist between two performance attributes or between

a performance attribute and a virtual performance attribute if a change in the

performance attribute may affect the other performance or virtual performance

attribute. If a virtual performance attribute is affected, the corresponding

performance attributes associated with it must be identified.

A four step algorithm will now be outlined for identifying all of the

performance attributes in the program affected by performance ripple effect.

The input to the algorithm consists of a set X which contains the performance

attributes directly affected by the modification. At termination of the algo-

rithm, the set X contains all of the performance attributes affected directly

by the modification or by performance ripple effect.

29

Step 1: Select a performance attribute, x, in X which has not been selected

before. If there are no any new elements in X to be selected, then terminate.

Step 2: Utilizing the performance dependency relationships in existence among

the performance attributes in the program, identify all the performance

attributes in the program which may be affected by a modification of perfor-

mance attribute x. Add these new performance attributes to X if they have not

already appeared.

Step 3: Utilizing the performance dependency relationships in existence

between the performance attributes and the virtual performance attributes in

the program, identify all of the virtual performance attributes which may be

affected by a modification of performance attribute x. If x does not affect

any virtual performance attribute, go to Step I, otherwise go to Step 4.

Step 4: For each virtual performance attribute identified in Step 3, determine

the corresponding performance attributes associated with it. Add these per-

iormance attributes to X if they have not already appeared. Go to Step 1.

In the following sections, a description of each of the steps in this

algorithm will be provided. In order to simplify our description, we will

label the various mechanisms for propagation of performance changes as shown

in Table 1.

5.2.4.1 Description of Processing Step 1

In this step, a performance attribute x is selected from X. The only

criterion for selecting x is that it has not been selected before. Thus, some

scheme must be implemented for keeping track of which performance attributes

have been selected. Once all performance attributes have been selected, the

algorithm terminates.

5.2.4.2 Description of Processing Step 2

In this step, all of the performance attributes in the program which may

be affected by a modification of performance attribute x are identified by

utilizing the performance dependency relationships in existence among the

performance attributes in the program. These new performance attributes are

added to X if they have not already appeared. The performance dependency

relationships among the performance attributes in the program can be described

according to a set of rules.

30

ki

TABLE 1. LABELS FOR MECHANISMS FOR PROPAGATION
OF PERFORMANCE CHANGES

Mechanism One Parallel Execution

Mechanism Two Shared Resources

Mechanism Three Interprocess Communication

Mechanism Four Called Modules

Mechanism Five Shared Data Structures

Mechanism Six Sensitivity to Rate of Input

Mechanism Seven Execution Priorities

Mechanism Eight Abstraction

31

The rules are of the format

MODULE X/PA.Y - MODULE Z/PA.W CONDITION

and are interpreted as follows: A change in performance attribute Y of module

X may affect performance attribute W of module Z if the condition is satisfied.

A variation of this format is the replacement of MODULE with DS. which repre-

sents data structure. DS. X/PA.Y. is then interpreted as the Yth performance

attribute of data structure X.

The rules for describing performance dependency relationships among the

performance attributes in the program are the following:

MODULE X/PA.I -4 MODULE Y/PA.I if X is the dependent module involved in a

PDR with module Y via mechanism one, four, or eight.

MODULE X/PA.I -1 MODULE Y/PA.4 if X is involved in a PDR with module Y via

mechanism one.

MODULE X/PA.l -* MODULE Y/PA.6 if X is the dominant module involved in a

PDR with module Y via mechanism four, eight, or one.

MODULE X/PA.2 for resource i -3 MODULE Y/PA.2 for resource i if module X

is involved in a FIR with module Y via mechanism two.

MODULE X/PA.2 for resource i -> MODULE Y/PA.3 for resource i if module X =

module Y or module X is involved in a PIR with module Y via mechanism two.

MODULE X/PA.2 for resource i -> MODULE Y/PA.4 if module X is involved in a

FIR with module Y via mechanism two.

MODULE X/PA.2 for resource i -) MODULE Y/PA.7 for resource i if module X =

module Y.

MODULE X/PA.3 for resource i -i MODULE Y/PA.2 for resource i if module X

is involved in a PIR with module Y via mechanism two.

MODULE X/PA.3 for resource i -+ MODULE Y/PA.3 for resource i if module X

is involved in a FIR with module Y via mechanism two.

MODULE X/PA.3 for resource i -* MODULE Y/PA.4 if module X is involved in a

FIR with module Y via mechanism two.

MODULE X/PA.3 for resource i - MODULE Y/PA.7 for resource i if module X =

module Y.

MODULE X/PA.4 - MODULE Y/PA.2 for resource i if module X = module Y.

MODULE X/PA.4 - MODULE Y/PA.3 for resource i if module X - module Y.

32

MODULE X/PA.4 - MODULE Y/PA.4 if there exists a module Z such that a PDR

is in existence between module Y and module Z via mechanism two or three and

module X has precedence over module Y.

MODULE X/PA.4 -) MODULE Y/PA.5 for message i if module X = module Y.

MODULE X/PA.6 -) MODULE Y/PA.4 if there exists a module Z such that a PDR

is in existence between module Y and module Z via mechanism two or three and

module X has precedence over module Y.

MODULE X/PA.6 -3 MODULE Y/PA.6 if module X is the dominant module involved

in a PDR with module Y via mechanism four, seven, or eight.

MODULE X/PA.7 for resource i -) MODULE Y/PA.7 for resource i if module X

is the dominant module involved in a PDR with module Y via mechanism four or

eight.

MODULE X/PA.7 for resource i -* MODULE Y-ALPHA Z/PA.7 for resource i if

module X is the dominant module involved in a PDR with module Y via mechanism

four and the call to module X is in Alpha Z.

DS.X/PA.9 -* DS.Y/PA.8 if DS.X = DS.Y

DS.X/PA.9 - DS.Y/PA.lO if DS.X - DS.Y

MODULE X/PA.ll -> DS.Y/PA.9 if module X stores the irput in data structure

Y.

These rules can be utilized to deLermine exactly which performance attri-

butes in the program may be affected by a modification of performance attribute

x. The appropriate rules for performance attribute x are first identified. A

check is then made to determine if the condition for the performance dependency

relationship rule is satisfied. This determination can be made by examining

the performance dependency relationship data base created during identification

of the mechanisms in lexical analysis. If the condition is satisfied, then the

performance attribute affected by the rule is added to set X if it has not

already existed in X.

5.2.4.3 Description of Processing Step 3

In this step, all of the virtual performance attributes in the program

which may be affected by a modification of performance attribute x are iden-

tified by utilizing the performance dependency relationships in existence from

the performance attributes to the virtual performance attributes in the

33

program. The performance dependency relationships from the performance attri-

butes to the virtual performance attributes can be described according to a

set of rules. The rules are of the format

MODULE X/PAoY - MODULE Z/VPA.W CONDITION

and are interpreted as follows: A change in performance attribute Y of module

X may affect virtual performance attribute W of module Z if the condition is

satisfied. The rules for describing performance dependency relationships

between the performance attributes and the virtual performance attributes in

the program are the following:

MODULE X/PA.2 for resource i -* MODULE Y/VPA.l for the request for resource

i if module X is involved in a PIR with module Y via mechanism two.

MODULE X/PA.3 for resource i -4 MODULE Y/VPA.l for the request for resource

i if module X is involved in a PIR with module Y via mechanism two.

MODULE X/PA.6 -) MODULE Y/VPA.2 for each statement invoking module X in

module Y.

DS.X/PA.8 -* MODULE Y/VPA.4 for each statement referencing data structure

X in module Y.

MODULE X/PA.5 for message i -> MODULE Y/VPA.5 for the statement correspond-

ing to a WAIT for message i.

MODULE X/PA.12 for dependent iterative structure i -* MODULE Y/VPA.3 for

dependent iterative structure i if module X = module Y.

These rules can be utilized to determine exactly which virtual perfor-

mance attributes in the program may be affected by a modification of perfor-

mance attribute x. The appropriate rules for performance attribute x are

first identified. A check is then made to determine if the condition for the

performance dependency rule is satisfied. This determination can be made by

examining the performance dependency relationship data base created during the

identification of the mechanisms in lexical analysis. If the condition is

satisfied, then the virtual performance attribute affected by the rule is

identified and undergoes further processing in Step 4.

5.2.4.4 Description of Processing Step 4

In Step 3 of the algorithm the virtual performance attributes affected as

34

VPVFN

a consequence of modification of performance attribute x were identified.

For each virtual performance attribute, a set of performance attributes.sicn

be associated with it such that if the virtual performance attribute is

affected, the performance attributes are also affected. In this step, the

performance attributes associated in this way with a particular virtual per-

formance attribute must be identified. This identification is dependent of

the particular type of virtual performance attribute which is being considered.

In the following sections simple algorithms will be presented for identifying

the performance attributes associated with each of the virtual performance

attribute types. Thus, for each of the virtual performance attributes iden-

tified in Step 3, the appropriate algorithm can be executed to identify the

performance attributes associated with it. These performance attributes are

then added to set X if they have not already appeared.

5.2.4.4.1 Algorithm for Identifying Virtual Performance Attributes of Type One

Step 1: Utilizing the critical section data base, identify the critical sec-

tions of the module which contain the request for the resource in contention

associated with the virtual performance attribute of type one.

Step 2: Utilizing the performance attribute data base, identify the perfor-

mance attributes of the module which are associated with these critical sec-

tions. These performance attributes are then associated with the virtual

performance attribute.

5.2.4.4.2 Algorithm for Identifying Virtual Performance Attributes of Type Two

Step 1: Utilizing the critical section data base, identify the critical sec-

tions of the module which contain the statement which invokes the module or

abstraction which is associated with the virtual performance attribute of type

two.

Step 2: Utilizing the performance attribute data base, identify the perfor-

mance attributes of the module which are associated with these critical sec-

tions. These performance attributes are then associated with the virtual

performance attribute.

'5.2.4.4.3 Algorithm for Identifying Virtual Performance Attributes of Type Three

Step 1: Utilizing the critical section data base, identify the critical

35

sections of the module which contain the iterative code controlled by the

dependent iterative structure which is associated with the virtual performance

attribute of type three.

Step 2: Utilizing the performance attribute data base, identify the perfor-

mance attributes of the module which are associated with these critical sec-

tions. These performance attributes are then associated with the virtual per-

formance attribute.

5.2.4.4.4 Algorithm forldentifying Virtual Performance Attributes of Type Four

Step 1: Utilizing the critical section data base, identify the critical sec-

tions of the module which contain the reference to the data structure which

is associated with the virtual performance attribute of type four.

Step 2: Utilizing the performance attribute data base, identify the perfor-

mance attributes of the module which are associated with these critical sec-

tions. These performance attributes are then associated with the virtual per-

formance attribute.

5.2.4.4.5 Algorithm for Identifying Virtual Performance Attributes of TypeFive

Step 1: Utilizing the critical section data base, identify the critical sec-

tions of the module which contain the WAIT statement for the message associ-

ated with the virtual performance attribute of type five.

Step 2: Utilizing the performance attribute data base, identify the perfor-

mance attributes of the module which are associated with these critical sec-

tions. These performance attributes are then associated with the virtual

performance attribute.

5.2.5 Tracing Step 5

In this step, all of the performance requirements which are affected by

a change in any of the performance attributes involved directly with the modi-

fication or through performance ripple effect are identified. All of the per-

formance attributes involved directly with the modification or through perfor-

mance ripple effect have previously been identified and are elements of set X.

The corresponding performance requirements affected by changes in these perfor-

mance attributes can then be identified by utilizing the data base containing

the traceability of the decomposition of the performance requirements into the

36

performance attributes performed during lexical analysis.

6.0 Integration of the Performance Ripple Effect Analysis and the Logical

Ripple Effect Analysis Processing Steps

In Part I of this handbook a logical ripple effect analysis technique to

improve the maintenance process was described. In Part II of this handbook a

performance ripple effect analysis technique to improve the maintenance proc-

ess was also described. The performance ripple effect analysis technique

should be used in conjunction with the logical ripple effect analysis techni-

que. In this section, the required processing steps of the performance ripple

effect analysis technique will be integrated with those of the logical ripple

effect analysis technique in order to produce a unified ripple effect analysis

technique. The unified ripple effect analysis technique will consist of a

lexical analysis phase and a tracing phase.

6.1 Lexical Analysis Phase

The first phase of the ripple effect analysis technique is the lexical

analysis phase. In this phase, the program is analyzed with respect to the

proposed modification and a characterization of the program is compiled and

saved in a data base. The characterization of the program contains the infor-

mation necessary for tracing both logical and performance ripple effect. A

description of the required processing steps involved with lexical analysis

will now be presented.

Step 1: Perform the Text-Level Lexical Analysis to produce a program graph

based on program blocks, compute the error flow properties of each program

block, and construct the invocation graph.

Step 2: Perform the System-Level Lexical Analysis to derive the precedence

ordering among modules, compute the module error characteristics sets, 4ad

update the block error characteristic sets.

Step 3: Identify all the mechanisms for fhe propagation of performance

changes and the corresponding performance dependency relationships in the

program.

Step 4: Identify all the critical sections in the program in terms of the

program blocks identified in Step 1.

37

I ~W FM-~- W

Step 5: Identify all the performance attributes in the program.

Step 6: Identify all the virtual performance attributes in the program.

Step 7: Decompose the performance requirements for the program into the per-

formance attributes which contribute to the preservation or violation of the

performance requirements.

6.2 Tracing Phase

The second phase of the ripple effect analysis technique consists of

tracing the logical and performance changes, i.e. the ripple effect which

occurs as a consequence of the maintenance changes. The input to the techni-

que in this phase includes all of the information about the program collected

and stored in a data base during the lexical analysis phase. A description

of the required processing steps involved with the tracing phase will now be

presented.

Step 1: Utilizing the change management system data base and the character-

ization of the program produced during lexical analysis, identify the set of

blocks and their primary error sources initially involved in the change for

each module in the program.

Step 2: Based upon the blocks involved in the change identified in the pre-

vious step and the characterization of the program produced during lexical

analysis, identify all of the critical sections affected by the maintenance

activity.

Step 3: For each of the critical sections affected by the modification,

determine the corresponding performance attributes which may be affected if

the critical section is modified. The correspondence between performance

attributes and critical sections was generated during lexical analysis.

Step 4: Form a set 74 composed of modules initially involved in the change.

Step 5: Compute the error flow of set F. Let the set of modules affected by

the error flow define set 7w and the set of blocks and their error sources

within each module M which contributes to error flow define L.i J.
Step 6: Apply the ripple effect criterion to each element in 74 . Let all

modules in 74, which require additional maintenance due to the ripple effect

criterion, define set 7. /*

Step 7: Apply the block elimination criterion to each element in . Let all

38

blocks and their error sources within M. which require additional maintenance
R

activity define LR. The maintenance personnel must check all of the blocks
R R

in L. for each module in 72? to insure that they are consistent with the

initial change.

Step 8: Trace the performance ripple effect among the performance attributes

utilizing the performance dependency relationship rules in order to identify

all of the performance attributes affected by the modification.

Step 9: Identify the performance requirements which are affected by a change

in any of the performance attributes involved directly with the modification

or through ripple effect. These performance requirements can be identified

by the traceability of the decomposition of the performance requirements into

the performance attributes performed during lexical analysis.

In Section 6.1 and 6.2 the required processing steps of the unified

ripple effect analysis technique were presented. The complete description of

each of these steps can be found in Section 5 of Part I and Part II of the

handbook.

7.0 References

[1] Yau, S. S., Collofello, J. S. and Hsieh, C. C., "Self-Metric Software Vol II"--

A Handbook: Part I, Logical Ripple Effect Analysls, Final Technical Report.

[2] Yau, S. S., Collofello, J. S., and MacGregor, T., "Ripple Effect Analy-
sis of Software Maintenance," Proc. of COMPSAC 78, pp. 60-65.

[3] Yau, S. S. and Collofello, J. S., "Performance Considerations in the
Maintenance Phase of Large-Scale Systems," RADC-TR-79-129, June 1979.

[41 Yau, S. S. and Collofello, J. S., "Performance Ripple Effect Analysis for
Large-Scale Software Maintenance", RADC-.TR-80-55, December, 1979.

[5] Yau, S. S., "Self-Metric Software--Summary of Technical Progress", Vol I
Final Technical Report.

[6] Alford, M. W., "A Requirement Engineering Methodology for Real-Time
Processing Requirements," IEEE Trans. 6n Software Engineering, Vol. SE-3,
January 1977, pp. 60-69.

[71 Gannon, C., Brooks, N. B. and Urban, R. J., "JAVS Technical Report,
User's Guide," RADC-TR-77-126, Vol. I, 1977.

39

N,

DAT

FILMEI

ITI

